$$ f : \R \rightarrow \R \text{ or } \mathbb{C} $$
$$ f : \Z \rightarrow \R \text{ or } \mathbb{C} $$
$$ \exists p \in \N \space | \space f(n + p) = f(n), \forall n \in \Z $$
$p$ must be the smallest positive integer that satisfies this equation.
$$ f(n) \rightarrow \mathbf{f} = \begin{bmatrix} f(0) \\ \vdots \\ f(p-1) \end{bmatrix} $$
Note that $n$ does not have to start at $0$, sometimes it is more convenient to choose a different starting sample.
$$ \delta(n) = \begin{cases} 1 \hspace{15pt} n=0 \\ 0 \hspace{15pt} n \neq 0\end{cases} \hspace{15pt}\delta : \Z\rightarrow \{0, 1\} $$
Gives the complex exponential its geometric intuition.
$$ e^{i(\omega t + \theta)} = \cos(\omega t + \theta) + i \sin(\omega t + \theta) $$
Algebraic rearrangement of Euler’s Formula.
$$ \cos(\omega t + \theta) = \frac{e^{i(\omega t + \theta)} + e^{-i(\omega t + \theta)}}{2} \\ \hspace{0pt} \\ \sin(\omega t + \theta) = \frac{e^{i(\omega t + \theta)} - e^{-i(\omega t + \theta)}}{2i} $$
Family of $p$-periodic signals over a discrete sample domain. These signals are typically only plotted on stem plots if the function value is real for all $n \in \Z$.
$$ x(n) = e^{i \omega _0 n} \hspace{25pt} x : \Z \rightarrow \mathbb{C}, \hspace{5pt} \omega_0 \in \R $$