For vectors spaces $\mathbf{V}$ and $\mathbf{W}$ over the same field, the function $T : V \rightarrow W$ is a linear map if it satisfies the following:
$$ \text{L1. $\textbf{Preservation of Additive Structure}$. } T(v+u) = T(v) + T(u) \\
\text{L2. $\textbf{Homogeneity}$. } T(\lambda v) = \lambda T(v) \hspace{39pt} \\ $$
The set of all linear maps from $\mathbf{V}$ to $\mathbf{W}$ is denoted $\mathscr{L}(\mathbf{V}, \mathbf{W})$ and the set of all operators, linear maps from a vector space $\mathbf{V}$ to itself, is denoted $\mathscr{L}(\mathbf{V})$.
<aside> <img src="/icons/chess-pawn_brown.svg" alt="/icons/chess-pawn_brown.svg" width="40px" />
Proposition. $\mathscr{L}(\mathbf{V}, \mathbf{W})$ is a subspace of $\mathbf{W} ^\mathbf{V}$.
</aside>
<aside> <img src="/icons/chess-pawn_brown.svg" alt="/icons/chess-pawn_brown.svg" width="40px" />
Proposition. If $T \in \mathscr{L}(\mathbf{V}, \mathbf{W})$ then $T(0_\mathbf{V}) = 0_\mathbf{W}$.
<aside> <img src="/icons/book_red.svg" alt="/icons/book_red.svg" width="40px" />
Lemma. For finite dimensional $\mathbf{V}$ and $\mathbf{W}$ with $\dim \mathbf{V} = \dim \mathbf{W}$, then for any $T, S \in \mathscr{L}(\mathbf{V}, \mathbf{W})$, $T$ has a left inverse iff it has a right inverse.
$$ ST=I_\mathbf{V} \iff TS = I_\mathbf{W} $$
</aside>
<aside> <img src="/icons/book_red.svg" alt="/icons/book_red.svg" width="40px" />
Lemma. For finite dimensional $\mathbf{V}$ and $\mathbf{W}$ over the same field,
$$ \dim \mathbf{V} > \dim \mathbf{W} \rightarrow \nexists T \in \mathscr{L}(\mathbf{V}, \mathbf{W}) : \text{$T$ is injective} $$
$$ \dim \mathbf{V} < \dim \mathbf{W} \rightarrow \nexists T \in \mathscr{L}(\mathbf{V}, \mathbf{W}) : \text{$T$ is surjective} $$
</aside>
<aside> <img src="/icons/book_red.svg" alt="/icons/book_red.svg" width="40px" />
Linear Map Lemma. For any basis $v_1, \dots, v_n$ of $\mathbf{V}$ and any list $w_1, \dots, w_n$ in $\mathbf{W}$, there exists a unique $T \in \mathscr{L}(\mathbf{V}, \mathbf{W})$ such that $T(v_i) = w_i$ for $i = 1, \dots, n$.
In general, we are always able to conjure up a well-defined function which assigns a basis to a particular list. The power of this lemma comes from the fact that any such function is a linear map.
</aside>
<aside> <img src="/icons/castle_yellow.svg" alt="/icons/castle_yellow.svg" width="40px" />
Fundamental Theorem of Linear Maps. For any finite dimensional vector field $\mathbf{V}$ and linear map $T \in \mathscr(\mathbf{V}, \mathbf{W})$, $\text{range }T$ is also finite dimensional and the following formula is given:
$$ \dim V = \dim (\text{null } T) + \dim (\text{range }T) $$
<aside> <img src="/icons/castle_yellow.svg" alt="/icons/castle_yellow.svg" width="40px" />
Fredholm Alternative. For finite-dimensional vector spaces $\mathbf{V}$ and $\mathbf{W}$ with $\dim V = \dim W$, then for any $T \in \mathscr{L}(\mathbf{V}, \mathbf{W})$, the following is true.
$$ \text{$T$ is bijective $\iff$ $T$ is injective $\iff$ $T$ is surjective} $$
</aside>
The null space of a linear map $T \in \mathscr{L}(\mathbf{V}, \mathbf{W})$ is the set of all vectors it maps to $0_\mathbf{W}$.
$$ \ker T = \text{null }T := \{v \in V:T(v) = 0_\mathbf{W} \} $$
<aside> <img src="/icons/chess-pawn_brown.svg" alt="/icons/chess-pawn_brown.svg" width="40px" />
Proposition. For $T \in\mathscr{L}(\mathbf{V}, \mathbf{W})$, $\text{null }T \leq \mathbf{V}$.
</aside>
<aside> <img src="/icons/book_red.svg" alt="/icons/book_red.svg" width="40px" />
Lemma. For $T \in\mathscr{L}(\mathbf{V}, \mathbf{W})$, $T$ is injective iff its null space is trivial.
$$ T \text{ is injective} \iff \text{null }T = \{0_\mathbf{V}\} $$
The range of a linear map $T \in \mathscr{L}(\mathbf{V}, \mathbf{W})$ is the set of all vectors it maps elements of $V$ to.