$$ z \in \mathbb{C} \hspace{15pt} \boldsymbol{\sim} \hspace{15pt} S \in \mathscr{L}(\mathbf{V}) \\
\hspace{3pt}\bar{z} \in \mathbb{C} \hspace{15pt} \boldsymbol{\sim} \hspace{15pt} S^* \in \mathscr{L}(\mathbf{V}) \\
\hspace{26pt} z \in \R \iff z=\bar{z} \hspace{15pt} \boldsymbol{\sim} \hspace{15pt}\text{$S$ is self-adjoint} \iff S=S^* \\
\hspace{49pt} z \in \R _{\geq0} \hspace{15pt} \boldsymbol{\sim} \hspace{15pt} \text{$S$ is positive semidefinite} \\
z \in \mathbb{C}, |z|=1 \iff zz^* = 1 \hspace{15pt} \boldsymbol{\sim} \hspace{15pt} \text{$S$ is unitary } \iff SS^* = I \hspace{26pt} $$
An operator $T \in \mathscr{L}(\mathbf{V})$ is positive semidefinite if it is self-adjoint and the following holds,
$$ \forall v \in V, \lang Tv \space | \space v\rang \geq 0 $$
<aside> <img src="/icons/castle_yellow.svg" alt="/icons/castle_yellow.svg" width="40px" />
Characteristics of Positive Semidefinite Operators. The following are equivalent:
An operator $T \in \mathscr{L}(\mathbf{V})$ is positive definite if it is self-adjoint and the following holds,
$$ \forall v \in V, v \neq 0, \lang Tv \space | \space v \rang > 0 $$
<aside> <img src="/icons/castle_yellow.svg" alt="/icons/castle_yellow.svg" width="40px" />
Cholesky Factorization. Any positive definite matrix $B \in F^{n \times n}$ can be decomposed uniquely into the product of an upper-triangular matrix $R \in F^{n \times n}$ with positive eigenvalues and its conjugate transpose $R^*$.
$$ B = R^* R $$
A linear map $S \in \mathscr{L}(\mathbf{V}, \mathbf{W})$ is an isometry if it preserves norms.
$$ ||Sv|| = ||v|| $$
<aside> <img src="/icons/castle_yellow.svg" alt="/icons/castle_yellow.svg" width="40px" />
Characteristics of Isometries. For orthonormal bases
$\beta = e_{1:n}$ and $\gamma =f_{1:m}$ of $\mathbf{V}$ and $\mathbf{W}$ respectively, the following are equivalent: