For any finite-dimensional inner product space $\mathbf{V}$ and any $\phi _v \in V'$, there exist a unique $v \in V$ such that
$$ \phi_v (u) = \lang u \space | \space v\rang \hspace{15pt} \forall u \in V $$
Moreover, since $v$ is unique, this result says that the map $\mu : V \rightarrow V'$, for which $v \mapsto \phi_ v$, is an anti-linear isomorphism ($\phi_{\lambda v} = \bar{\lambda} \lang u \space | \space v\rang$).
The significance of this theorem comes from the fact that because this map is an isomorphism, we can equivalently represent any linear functional $\phi_v$ as a vector in $\mathbf{V}$, namely the vector $v$ for which taking the inner product with any other vector $u$ yields the same result as applying $\phi _v$ to $u$.
The adjoint of a linear map $T \in \mathscr{L}(\mathbf{V}, \mathbf{W})$ is the unique linear map $T^* \in \mathscr{L}(\mathbf{W}, \mathbf{V})$ with the property that for all $v \in V$ and $w \in W$,
$$ \lang Tv \space | \space w\rang = \lang v \space | \space T^* w\rang $$
<aside> <img src="/icons/castle_yellow.svg" alt="/icons/castle_yellow.svg" width="40px" />
Characteristics of Adjoints.
<aside> <img src="/icons/book_red.svg" alt="/icons/book_red.svg" width="40px" />
Lemma. The null spaces and ranges of $T$ and $T^*$ are related by orthogonal complements.
$$ \text{null } T^* = (\text{range }T)^\perp \\
\text{range } T^* = (\text{null }T)^\perp $$
<aside> <img src="/icons/book_red.svg" alt="/icons/book_red.svg" width="40px" />
Lemma. For orthonormal bases $\beta$ and $\gamma$ of $\mathbf{V}$ and $\mathbf{W}$ respectively,
$$ [T^*]{\gamma} ^\beta = (\overline{[T]{\beta}^\gamma})^T $$
An operator is said to self-adjoint if it is its own adjoint and normal if it commutes with its adjoint.
$$ \text{$T$ is self-adjoint } \iff T= T^* \\ \hspace{113pt} \text{$T$ is normal } \iff TT^* = T^T \iff [T, T^] =0 $$
<aside> <img src="/icons/book_red.svg" alt="/icons/book_red.svg" width="40px" />
Lemma. If $T$ is self-adjoint, all of its eigenvalues are real.
$$ T=T^* \implies \sigma (T) \sub \R $$
<aside> <img src="/icons/book_red.svg" alt="/icons/book_red.svg" width="40px" />
Lemma. A self-adjoint operator $T$ is $0$ iff any preimage is orthogonal to its image.
$$ T=0\iff \forall v \in V, \lang Tv \space | \space v \rang = 0 $$
</aside>