<aside> <img src="/icons/castle_yellow.svg" alt="/icons/castle_yellow.svg" width="40px" />
Characteristics of Adjoint-Map Product. For $T \in \mathscr{L}(\mathbf{V}, \mathbf{W})$,
The singular values of a linear map $T \in \mathscr{L}(\mathbf{V}, \mathbf{W})$ are the principal square roots of the eigenvalues $\lambda$ of $T^*T$ listed in decreasing order and included as many times as the dimension of $E(\lambda, T^*T)$.
<aside> <img src="/icons/castle_yellow.svg" alt="/icons/castle_yellow.svg" width="40px" />
Characteristics of Singular Values. For $T \in \mathscr{L}(\mathbf{V}, \mathbf{W})$,
The singular value decomposition of a linear map $T \in \mathscr{L}(\mathbf{V}, \mathbf{W})$ represents $T$ in terms of its singular values $s {1:m}$ and orthonormal lists $e{1:m}$ and $f_{1:m}$ in $\mathbf{V}$ and $\mathbf{W}$ respectively.
$$ Tv = s_1 \lang v \space| \space e_1\rang f_1 + \dots + s_{m}\lang v\space | \space e_m\rang f_m $$
Moreover, we can write the matrix with respect the bases these lists extend to in the following way,
$$ ([T]{e{1:\dim\mathbf{V}}}^{f_{1: \dim \mathbf{W}}})_{i, j} = \begin{cases} s_k \hspace{15pt} 1\leq i=j \leq m \\ 0 \hspace{19pt} \text{otherwise }\end{cases} $$
Which follows from the definition $f_k := \frac{Te_k}{s_k}$.